物体识别
此时的主流方法是只从图像本身考虑,而不去管物体原来的三维形状。这类方法统一叫做appearance based techniques。所谓appearance, 从模式识别的角度去描述的话,就是图像特征(feature),令牌识别桌,即对图像的一种抽象描述。有了图像特征,就可以在这个特征空间内做匹配,或者分类。然 而这个方法还是存在很多问题,物体识别桌,首先它需要我们对所有的图片进行对齐,像人脸图像,就要求每一幅图中五官基本在固定的位置。但是很多应用场景下,目标并不是 像人脸那么规整,很难去做统一对齐,而且这种基于全局特征和简单欧式距离的检索方法,识别桌,对复杂背景,遮挡,和几何变化等并不适用。
物体识别
当时MIT的计算机老师组织了一个面向本科生的两个月的Summer Project。这个Project的目的是设计一个系统,能够智能识别场景里头的物体,并区分出类别。当时他们低估了这个问题的难度,结果可想而知。
原因是我们看到的这个物体的样子,只是它在某种背景下某一种光线条件下特定角度的投影的,换一个角度可能就是完全不同的样子。即使是同一个物体,例如人,躺着或者站着,形态都是不一样的。
物体识别
尝试用创建三维模型方法去做物体识别。通常,事先定义一些基本的几何形状,然后把物体表示为基本几何形状的组合,然后去匹配图像。这时候识别问题变成了一个匹配问题。在三维模型库中去搜索可能的视角投影,跟待识别的图像进行匹配。如果找到较合适的匹配,就认为是识别成功了。
但是这么做并不是很有效。首先,很多物体很难用所谓的基本几何形状去描述它,特别是一些非刚体,比如动物;其次,对于一类物体,它可能会有丰富的类内差异性,智能识别桌设备,即使是同一个物体在不同的姿态下也不一样,不可能每一种姿态都预先创建一个三维模型模板;第三,即使解决了之前的问题,如何才能准确地从图像中提取出 这些几何形状也存在困难。
智能识别桌设备-识别桌-华奕科技由北京华奕互动科技有限公司提供。智能识别桌设备-识别桌-华奕科技是北京华奕互动科技有限公司今年新升级推出的,以上图片仅供参考,请您拨打本页面或图片上的联系电话,索取联系人:程帅。